Wigner surmise for mixed symmetry classes in random matrix theory
نویسندگان
چکیده
منابع مشابه
Wigner surmise for mixed symmetry classes in random matrix theory.
We consider the nearest-neighbor spacing distributions of mixed random matrix ensembles interpolating between different symmetry classes or between integrable and nonintegrable systems. We derive analytical formulas for the spacing distributions of 2×2 or 4×4 matrices and show numerically that they provide very good approximations for those of random matrices with large dimension. This generali...
متن کاملWigner surmise for Hermitian and non-Hermitian chiral random matrices.
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...
متن کاملExact Wigner surmise type evaluation of the spacing distribution in the bulk of the scaled random matrix ensembles
Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s)e−b(s) for a simply related to a Painlevé transcendent and b its anti-derivative. ...
متن کاملWigner surmise type evaluation of the spacing distribution in the bulk of the scaled random matrix ensembles
Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s)e −b(s) for a simply related to a Painlevé transcendent and b its anti-derivative....
متن کاملEntanglement in quantum spin chains, symmetry classes of random matrices, and conformal field theory.
We compute the entropy of entanglement between the first N spins and the rest of the system in the ground states of a general class of quantum spin chains. We show that under certain conditions the entropy can be expressed in terms of averages over ensembles of random matrices. These averages can be evaluated, allowing us to prove that at critical points the entropy grows like kappalog(2N+kappa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2012
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.85.061130